<em>PADUA</em>

The seat carries out research and technology transfer in different areas of chemistry, materials and energetics

VISIT

PADUA PADUA
Headquarter

<em>MILAN</em>

Research activity in Milan concerns the properties and technology of structural and functional materials, fluid dynamics, and diagnostics or reactive systems.

VISIT

MILAN MILAN
Organizative Unit

<em>GENOA</em>

ICMATE-Genoa has expertise in the fields of physical chemistry of interfaces and in the preparation of powders, ceramics and composites of functional oxides.

VISIT

GENOA GENOA
Organizative Unit

<em>LECCO</em>

ICMATE-Lecco is one of the few centers in Italy able to operate in the secondary metallurgy of advanced metallic materials

VISIT

LECCO LECCO
Organizative Unit

MErgELab combines expertise on Materials with Electrochemical skills aiming at optimized materials and devices for production, conversion and storage of Energy. As “physical room”, hosted at DICCA – UNIGE, in Via all’Opera Pia 15, MErgELab was established in 2016, thanks to a 15 years old fruitful collaboration between CNR-ICMATE and DICCA on these topics. MErgELab can perform all steps from powder synthesis to pre industrial scale up of devices for energy.

To improve the efficiency of total conversion of solar thermal collectors, the conversion of solar energy into thermal energy has to be improved, for example by improving the solar absorption.

Nowadays, more than 90% of hydrogen production comes from fossil fuels, as estimated by the US Department of Energy (DOE). Therefore, the systems of purification of hydrogen from by-products such as CH4, H2O, CO and CO2 represent a crucial step of the entire manufacturing process.

The increasing demand for alternatives to fossil fuels lead scientists to search for new materials to be used as energy vectors. Nowadays, it is generally accepted that hydrogen is the best solution to this issue. One of the reasons why hydrogen is not yet commonly employed in everyday life lies in the lack of a safe, practical and effective method for its storage. A possible solution that meets the above requirements is given by intermetallic hydrides, which can be charged with hydrogen at high-pressure to form stable hydrides, then releasing hydrogen by heating the host intermetallic.

Activities are focused on functional materials (metals or ceramics with protonic-anion and mixed conductivity) for fuel cells (SOFC), electrolysis cells (SOEC) and stacks. In addition to the formulation of new materials, a detailed study of the effects of composition, microstructure and degradation phenomena on performance is carried out on state-of-art materials.
The research aims at improving performance of devices by addressing degradation phenomena also through innovative cell designs.