- Home
- Institute
- Research
- Materials for energetics
- Materials and devices for heat recovery and energy efficiency
- Structural materials and coatings for nuclear and aerospace applications, gas turbines and energy processes
- Materials and technologies for renewable energies, fuel cells and hydrogen
- Electrochemistry of materials for catalysis, electrocatalysis, sensors and energetics
- Modeling and computational methods to study energy systems
- Advanced manufacturing
- Molecular systems and nanomedicine
- Materials for energetics
- Resources and services
- Knowledge dissemination
- People
- Projects and Agreements
- News & Events
This week's featured research
Production, manufacturing and functional characterization of materials and shape memory components
Shape memory alloys (SMA) are intermetallic compounds that exhibit extraordinary thermo-mechanical properties such as: the superelasticity and the shape memory effect. SMA functional performances are correlated to the composition as well as the microstructure induced during the material processing. For the developing of SMA components for practical applications all the processing steps, melting, hot and cold working and final training have to be controlled strictly to guarantee the programmed smart characteristics.